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a b s t r a c t

When appearance variation of object and its background, partial occlusion or deterioration in object

images occurs, most existing visual tracking methods tend to fail in tracking the target. To address this

problem, this paper proposes a new approach for visual object tracking based on Sample-Based

Adaptive Sparse Representation (AdaSR), which ensures that the tracked object is adaptively and

compactly expressed with predefined samples. First, the Sample-Based Sparse Representation, which

selects a subset of samples as a basis for object representation by exploiting L1-norm minimization,

improves the representation adaptation to partial occlusion for tracking. Second, to keep the temporal

consistency and adaptation to appearance variation and deterioration in object images during the

tracking process, the object’s Sample-Based Sparse Representation is adaptively evaluated based on a

Kalman filter, obtaining the AdaSR. Finally, the candidate holding the most similar Sample-Based Sparse

Representation to the AdaSR of the tracked object will be regarded as the instantaneous tracking result.

In addition, we can easily extend the AdaSR for multi-object tracking by integrating the sample set of

each tracked object (named Common Sample-Based Adaptive Sparse Representation Analysis

(AdaSRA)). AdaSRA fully analyses Adaptive Sparse Representation similarity for object classification.

Our experiments on public datasets show state-of-the-art results, which are better than those of several

representative tracking methods.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Research on object tracking in the past decades has yielded an
arsenal of powerful algorithms, which play important roles in
many applications, such as automatic visual surveillance [1],
human computer interaction systems [2] and robotics [3], where
moving objects in videos with stationary or even dynamic back-
ground can be effectively tracked, given simple data association
techniques.

Although researchers have made great progresses, there still
exist many open problems facing object motion state variation,
the appearance variation of either object or background and the
occlusions, etc. The previous research on object tracking focused
on template feature extraction and matching, which includes
three different categories: motion models [4,5], searching meth-
ods [6,7] and object representation [8–18].

Motion models are employed to predict the object’s location in
a new frame within a video sequence based on its history motion
ll rights reserved.
characteristics. This can improve the tracking stabilization and
make the tracking survive some occlusions if the trajectories of
objects are correctly predicted. Early works used a Kalman
filter [4] to provide solutions that are optimal for a linear
Gaussian model. The particle filter, also known as the sequential
Monte Carlo method, is one of the most popular approaches. It
recursively constructs the posterior probability density function
of the state space using Monte Carlo integration. It has been
developed in the computer vision community and applied to
tracking problems under the name of Condensation [5].

Searching methods are also indispensable to a successful
tracking. Given a tracked object, searching methods use various
matching strategies to find its location in a new video frame. In
addition, when the object varies in size, it is needed to calculate
the scale parameter. Early work [6] used the sum of squared
difference (SSD) as a cost function in the tracking problem.
Subsequently, more robust similarity measures have been applied
such as the mean-shift algorithm [7] was utilized to find the
optimal solution.

Although motion models and searching algorithms are crucial
to object tracking, it is not true that a proper motion model
together with a good searching algorithm will always lead to good

www.elsevier.com/locate/pr
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mailto:jiaojb@gucas.ac.cn
dx.doi.org/10.1016/j.patcog.2011.03.002


Z. Han et al. / Pattern Recognition 44 (2011) 2170–2183 2171
tracking results. Therefore, in this paper, we mainly investigate
the related problem: ‘‘What is an effective object representation
for tracking when there will be unpredictable appearance varia-
tion of the object and its background, partial occlusion and
deterioration in object images?’’
2. Related works

2.1. ‘‘Many could be better than one’’

Object representation is a key part of object tracking. In the
existing approaches, most algorithms model the object appear-
ance by extracting features from the global object region [9–13].
Color histogram is one of the most widely used feature [13,14] for
its effectiveness and efficiency. Some other characteristics, such
as texture, contour and feature point features, are employed to
represent the object [15,16]. Furthermore, combinations of these
features are proposed for representation [10–12]. In addition, due
to the appearance variations of tracked object and its background
during the tracking process, there have been enormous efforts on
finding the ‘‘optimal’’ features for discriminating the object with
its background. Collins et al. [13] online selected the top M most
discriminative features for tracking. In [11], Han et al. proposed
combined feature evaluation in Kalman filter frameworks for
adaptive object tracking. In [12], an appearance-adaptive model
is incorporated in a particle filter to realize robust visual tracking
and classification algorithms.

In [17–20], researchers proposed to segment a tracked object
into local regions and track the local regions individually to
improve tracking performance. Actually, they model the object
appearance as a bag of local regions, and treats object tracking as
individually tracking each part of the object. In [20], they
proposed a dynamic spatial bias appearance model based on
online learning the spatial bias of the object appearance dynami-
cally using local region confidences to guide object tracking in
cases of appearances variations of object and background.

The above tracking methods, which depend on global or local
template feature extraction and matching as shown in Fig. 1 (the
top row), achieve some success, however, they always suffer from
tracking failures caused by template drift, which often occurs in a
long duration tracking.

2.2. ‘‘Many could be better than all’’

Considering the basic issue of a tracking problem is to locate a
specific object in a searching area in a new frame, it is reasonable
to make a hypothesis that the tracked object can be represented
as a linear superposition of the samples just inside the searching
area. The searching area with careful definition is always much
larger than the tracked object region in tracking process, and
subsequently leads to some informative background samples for
superposition. Sometimes this could be necessary and efficient for
modeling the appearance variations of the object caused by
partial occlusion or deterioration in object images, since it is
Tracked object
Template feature extraction
(Color, Contour or Texture)

 Object tracking with AdaSR

 Object tracking with the object
template matching

Sample Set

Tracked object

Sample-Based Adaptive
Sparse Representation

(AdaSR)

Fig. 1. The top row is the flowchart of the template feature extraction and

matching based tracking method; the bottom row is the flowchart of the proposed

object tracking method.
nearly impossible to predict or model the appearance evolution
process only based on the object itself.

However, because of not enough prior knowledge, a long-term
suitable searching area for object tracking during the tracking
process is nearly impossible. Therefore, it is inevitable that the
samples from background are not all informative and useful for
representing the object, that is to say, there are many redundant
samples for linear superposition. It is necessary for us to make
some sample selection.

What’s more, modern investigation in the human vision
system (HVS) has shown that a selective small subset of neurons
is active for a variety of specific stimuli [21], such as color,
texture, shape, and scale. Among the large amount of neurons in
the human vision system, the firing of neurons to a specific object
is typically highly sparse. Based on the study of HVS, sparse
representation of an object has been brought out [22]. In [22] and
some other existing researches [23–25], all of them showed a
common sense: using parsimony as the principle for choosing a
limited subset of samples from a set, rather than directly using all
the samples, for representing an object is more effective.
2.3. Motivation

Inspired by the basic issue of object tracking and the devel-
opment of sparse representation for object representation, in this
paper, we cast the tracking as finding a sparse representation of
the tracked object based on a dynamically constructed and
updated sample set during the tracking process as shown
in Fig. 1 (the bottom row). This provides a new way to solve
object deterioration and the partial occlusion problems compared
with the traditional tracking approaches. When combining with
L1-norm minimization for Sample-Based Sparse Representation,
intuition behind which lies in the fact that some coefficients of
the Sparse Representation compactly expressing an object are
nonzero and other coefficients are almost zero. And considering
that the procedure of tracking is always temporal consistency, we
online evaluate Sample-Based Sparse Representation of the
tracked object in a Kalman filter by exploiting the Sparse
Representation in the current frame and those in the previous
frames. Finally, we investigate the property of Sample-Based
Adaptive Sparse Representation, which is effective as its coeffi-
cients are the discriminative information between objects, there-
fore, the candidate holding the most similar coefficient vector
with the tracked object will be seen as the instantaneous tracking
result. Different from [5], in which the sample set is used to
model the motion state of the tracked object, our sample set is
used to extract sparse representation of the object. In this paper,
our method is different from [26] mainly in the evolution of
sparse representation based on the sample set. We dynamically
and adaptively evaluate the sparse representation in filter frame-
work, which can ensure the temporal adaptation and consistency
of the appearance variations and lead to more robust tracking
results. Comparisons in details will be given in Section 5.

In addition, the Sparse Representation Classifier (SRC) [22]
based on residuals is very effective on face recognition, when
there are enough training samples. As a robust multi-class
classifier, SRC can also be used to solve the data association
problem in multi-object tracking by classifying each tracked
object. However, the effectiveness of SRC severely drops when
there are not enough samples for tracked objects. To solve this
problem, we fully utilize the property of AdaSR, and then propose
an extended method named the Sample-Based Adaptive Sparse
Representation Analysis (AdaSRA), which enriches its discrimina-
tive ability by reserving all coefficients for measuring the relation-
ship between an object and each class. The extensive experiments



Fig. 3. (a) The sample window of the object, (b) a sample, and (c) examples in the

sample set. (For interpretation of the references to color in this figure legend, the
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in Section 5.3 also show the superiority of AdaSRA over SRC.
Compared with classical methods, like joint probabilities data
association filter (JPDAF) [27], the intuition behind AdaSRA still
lies in the fact that the coefficients can be used to discriminate
between various classes based on a common basis, which is the
core of the data association between multiple objects in the
tracking process.

The rest of the paper is organized as follows. Single Object
Tracking via Sample-Based Adaptive Sparse Representation is
described in Section 3. Multi-object Tracking via Sample-Based
Adaptive Common Sparse Representation Analysis is discussed
in Section 4. Experiments with comparisons are given in Section 5.
Section 6 concludes this paper.
reader is referred to the web version of this article.)
3. Object tracking via Sample-Based Adaptive Sparse
Representation

Firstly, a sample set for the tracked object is constructed at the
beginning of a tracking process. Then, we represent the object in a
sparse and adaptive way during the tracking process based on the
sample set, where the Sample-Based Adaptive Sparse Representa-
tion of the object is first extracted by calculating the L1-norm
minimization and then evaluated in Kalman filter framework.
Finally, we track the object in a new video frame based on its
AdaSR. In addition, after some tracking frames, we update the
sample set and re-calculate the sparse representation (re-initiate
the tracking process). The flowchart is shown in Fig. 2.

3.1. Sample set construction and updating

A sample set is constructed for the object based on a window,
named sample window (the black square region in Fig. 3a), which
is a sub-image centered around the object when the tracking is
initialized. Each sample in the set is defined as a sub-window of
the sample window (the red rectangle region in Fig. 3b). A sample
rectangle in the window is specified by r¼ ðx,y,s,aÞ with
0oxoW , 0oyoH, s40, 00rar3600. This sample set is
almost infinitely large. For practical reasons, it is reduced as
follows:
1.
 The ðx,yÞ varies with the step of d pixels in horizontal and
vertical orientations.
Fig. 2. Flowchart of the proposed tracking method.
2.
 The s is uniformly sampled from f0:8, 0:9, 1:0,1:1, 1:2g times of
the tracked object’s size, when ðx,yÞ is fixed.
3.
 The a is set as 01 in our approach, for rotation of the object is
not considered in current research.

In our experiments, the sample window is empirically set as
the searching area (9 or 16 times of the size of the object region),
and d¼4 These restrictions lead to reasonable number of samples
in the set. Supposing we totally obtain K samples for constructing
the set fsk, k¼ 1,:::,Kg for an object, where most of the samples are
associated with the background, and a few of them are parts of or
the whole object (shown in Fig. 3c).

The sample set should be updated in tracking instantaneously. In
the tracking process, for each m tracking frames (m is set to 20 in our
experiments), we randomly choose a sample from the set and replace
it with the latest tracking result of the object. The updating of the
sample set ensures that most recent object appearances are reflected
in the sample set, which is another reason why our tracking is
adaptive. It should be noted that only one sample in the set is
replaced with the latest tracking result each time, and so even a bad
sample replacement during the tracking process of the proposed
updating strategy affects little on the whole set used for calculating
the adaptive sample-based sparse representation, which avoids the
drift problem and ensures tracking stability. While in most of existing
approaches like [28], a bad template updating method tends to cause
the template drift problem and then leads to tracking failures,
especially when there are object appearance variations or occlusions.

We use the Histogram of Colors (HC) in the RGB color space
and the Histogram of Oriented Gradients (HOG) on the gray-level
image to calculate the combined feature set (named the Histo-
gram of Oriented Gradients and Colors (HOGC)) to represent the
tracked object and the samples in the set. Then we can obtain a
feature set A¼ fak, k¼ 1,. . .,Kg and F for the sample set and the
object, respectively. The extraction of the combined feature is
described as follows.
3.1.1. Histogram of color

To calculate the color histogram, which is generally robust to
rotation and deformation [29], the RGB color space is chosen for its
simplicity. We first convert the color information of each pixel into a
quantized value, and then the quantized value is mapped to an index
of a corresponding histogram bin. The number of pixels assigned to
each bin is accumulated over the whole image patch. In this paper,
each color component (R, G and B) is linearly quantized into 16 levels
and then a histogram of 16 dimensions is extracted on each
component. We obtain a HC of 48 dimensions totally.
3.1.2. Histogram of oriented gradient

Motivated by the work in [30], a histogram of 72 dimensions is
extracted to describe the gradient orientation of a rectangle region,
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called HOG. Details of HOG feature extraction are described as
follows.

HOG is calculated in grayscale space. We first resize the
rectangle region of object or each sample into a normalized
window of fixed size, say 32�32 pixels. Then, we divide the
window into small spatial cells with the size of 8�8 and 4 (2�2)
such adjacent cells are then integrated into a block, therefore we
can obtain 9 blocks numbered from A to I, which overlap each
other (shown in Fig. 4a). Each pixel in a block calculates its
gradient orientation oriðh,wÞ based on Eq. (1). The mask for the
calculation of oriðh,wÞ is shown in Fig. 4b. Different from the
method in [30], each block in this approach constructs an 8-bin
HOG without local normalization (shown in Fig. 4c). Then we
combine the HOG of each block to obtain a 72-dimension feature
for the rectangle region of object or each sample

dy¼ Iðhþ1,wÞ�Iðh�1,wÞ,dx¼ Iðh,wþ1Þ�Iðh,w�1Þ,oriðh,wÞ

¼ atan2ðdy,dxÞ oriA ½�p,p� ð1Þ
3.2. Object sparse representation based on the sample set

When we obtain the sample set, it is reasonable to make
hypothesis that the tracked object can be approximately repre-
sented as a linear superposition of the samples just inside the
sample window as follows:

Ac� F ð2Þ

where F is the feature vector of the object, c¼ fck,k¼ 1,. . .,Kg is a
coefficient vector for superposition associated with A and F, and
ck is the coefficient of the kth sample in the set. Although the
above model can also be more complicated, we assume a linear
system in our paper from both efficiency requirement of a
practical application and simplicity of representation.

In a real condition, the sample window is always much larger than
the tracked object region, leading to a sparse coefficient vector of the
linear superposition, since there may be many redundant samples in
the set. In the case of partial occlusion, a limited number of negative
samples and some positive samples (samples obtained from the
tracked object region, such as parts of or the whole object) will be
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Fig. 4. HOG feature extraction: (a) 9 blocks for HOG feature extraction

Fig. 5. (a) A tracked object, (b) the sample win
activated, but the whole coefficient vector remains sparse, supposing
there are r nonzero coefficients in c¼ fck,k¼ 1,. . .,Kg, we can
reasonably infer that r{K. In this case, we say that the object has
an r-sparse representation based on the sample set. The number of
the nonzero coefficients is denoted by :c:0. Minimizing :c:0 is the
principle to obtain a sparse representation, which is, however, an NP-
hard problem. Recent development in the theory of compact sen-
sing [31] shows that the solution of L1-norm minimization subject to
a linear system of the samples can be used to find sparse enough
representation of the object. The resulting optimization problem,
similar to the LASSO in statistics [32], penalizes the L1-norm of the
coefficients in the linear combination, rather than directly penalizing
the number of nonzero coefficients (:c:0). In terms of the set A and
the object F, a sparse representation is computed as follows:

arg min:c:1, subject to Ac¼ F, ð3Þ

where :U:1 represents the L1-norm.
Since real images are noisy, it may not be possible to precisely

express the object directly with a sparse representation of the
samples. To model the noise in the video frame, we empirically
consider a noise term as e¼ 0:1 for the tracked object, and Eq. (3)
is then modified as

arg min:c:1, subject to :Ac�F:2re ð4Þ

where :U:2 represents the L2-norm. This model can be solved in
polynomial time by a linear programming or quadratic program-
ming method [33]. Even more efficient methods are available when
the solution is known to be very sparse. For example, Homotopy
algorithm [34] runs much more rapidly than general-purpose LP
solvers when sufficient sparsity is present. Indeed, the method often
has the following k-step solution property: if the underlying solu-
tion has only k nonzero coefficients, the Homotopy method reaches
that solution in only k iterative steps. When this property holds and
k is small compared to the problem size, L1-norm minimization
problems with k-sparse solutions can be solved in a fraction of the
cost of solving one full-sized linear system.

By solving Eq. (4), the vector of r (r5K) sparse coefficients can
be obtained. An example of the coefficient vector is given in Fig. 5,
where we use 100 samples in the set for calculating its sparse
coefficients; it is found that about 10 samples are selected to
( , 1)I h w +

)w

)w

)
1

8

23
4

5
6 7

, (b) mask for pixel gradient calculation, and (c) orientation bins.

dow, and (c) the sparse coefficient vector.
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express the object with a very small reconstruction error. It can be
seen from Fig. 5c that there are about 10 coefficients of the vector
are nonzero, samples corresponding to which are of the most
representative ability for the object in the tracking procedure,
showing the high sparsity.

In terms of the sample set A and its corresponding coefficient
vector c, the object is represented as follows when the tracking
procedure is initialed:

ða1,c1
Þ,ða2,c2

Þ. . .ðak,ck
Þ. . .ðaK ,cK

Þ

n o
ð5Þ

The property of the sparse representation can guarantee that
the object is represented in the most compact way based on the
sample set. That is to say, Sample-Based Sparse Representation
selects a small subset, in which the samples are the most
representative ones, such as parts of or the whole object.

3.3. Object tracking based on Adaptive Sparse Representation

(AdaSR)

During the tracking process, since the appearances of the
tracked object and its corresponding background are always
variational, therefore, on one side we update the sample set and
on another side we online adaptively model the evolution of the
object’s sparse representation in Kalman filter between
updatings.
3.3.1. Definition of the Kalman filter

In this paper, we put forward a lumped model for the Kalman
filter, which provides a recursive solution to the linear optimal
filtering problem and applies to stationary as well as non-
stationary environment [35], including the evolution of the object
sparse representation and its motion model. The state of the
Kalman filter is the sparse representation and the position of the
object, while the measurements include the sparse representation
and the location of the instantaneous tracking result. This can
induce a Kalman filter as

gctþ1

D gctþ1gPostþ1

D gPostþ1

0BBBBB@

1CCCCCA¼
IK�K IK�K 0 0

0 IK�K 0 0

0 0 IM�M IM�M

0 0 0 IM�M

0BBBB@
1CCCCA

ct

Dct

Post

DPost

0BBBB@
1CCCCAþut

mct

mPost

 !
¼

IK�K 0 0 0

0 0 IM�M 0

 ! ct

Dct

Post

DPost

0BBBB@
1CCCCAþvt

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ð6Þ

where ct ¼ fc
k
t ,k¼ 1. . .Kg is the posterior sparse coefficient vector

at frame t, Dct ¼ct�ct�1, mct is the instantaneous sparse
coefficient vector of the tracking result at frame t, Post is the
posterior location of the tracked object at frame t,
DPost ¼ Post�Post�1, mPost is the location obtained after the
matching procedure, M is set to 2, ut and vt are both Gaussian
white noises empirically, and IK�K is an identity matrix in our
experiment.
3.3.2. Object searching with adaptive prior Sparse Representation

When a new video frame t is coming, the tracking procedure is
performed as an exhaustive search algorithm in the searching
area Ot in the tth video frame. Our goal is to find the object
location ðx,yÞ� in Ot by minimizing the difference between the
adaptive prior sparse representation of the object with the sparse
representation of each candidate in Ot .

Min
ðx,yÞAOt

:fct�mcðCtðx,yÞÞ:1

� �
¼ Min
ðx,yÞAOt

:
XK

k ¼ 1

fck
t �mck

ðCtðx,yÞÞ:1

 !
ð7Þ

where Ctðx,yÞ is the candidate at location ðx,yÞ in Ot , mcðCtðx,yÞÞ
represents the sparse representation of candidate Ctðx,yÞ.

After we obtain the best match of the object in the searching
area in frame t by Eq. (7), we carry out the state correction
procedure based on the Kalman filter to obtain the posterior
sparse representation and position of the tracked object. Algo-
rithm 1 below summarizes the object tracking approach.

Algorithm 1: Object tracking via Adaptive Sparse Representation
1.
 Initialization (t ¼0).
1.1 Initializing the tracked object F manually;
1.2 Constructing the sample set A of the object;
1.3 Initializing the sparse coefficient vector c of the tracked

object in terms of Aand F using the L1-norm minimization.

2.
 Object tracking (t 40). In a new video frame:

2.1 Predicting the prior sparse representation and position of
the tracked object in the new frame;

2.2 Searching the object’s location in the searching area Ot by
minimizing the residual between prior sparse representa-
tion with the instantaneous sparse representation of each
candidate in Ot;

2.3 Correcting the posterior sparse representation and the
position.
3.
 t¼tþ1. If no updating, go to step 2 or end the tracking loop;
otherwise go to step 4.
4.
 Sample set updating (t 40).
4.1 Selecting a sample from the set randomly, and replace it

with the latest tracking result;
4.2 Go to step 1.2.
4. Multi-object tracking via Sample-Based Adaptive Sparse
Representation analysis

In a multi-object tracking system, precisely tracking each
single object is necessary but not enough, since given an object
in a multi-object tracking system, we should still know ‘‘which
object we are tracking?’’

We propose a novel scheme to assign an instantaneous tracked
result to a class based on adaptive sparse representation analysis
(AdaSRA). For multi-object tracking, we construct a common
sample set at the beginning of the tracking process, by combining
the sample set for each object in the following Eq. (8). We update
the common sample set by updating the sample set of each object
as described in Section 3.1

B¼ [ fAjg ¼ fa
1
1,a2

1,. . .,aK
1 , a1

2,a2
2. . .a

K
2 ,. . .,aK

J g, j¼ 1,. . .,J ð8Þ

where J is the number of all tracked objects, Aj is the feature set of
all the samples of the jth object. If there are K samples in each
object’s sample set, there are total K � J samples in the common
set. We can calculate the common sparse representation for each
object based on B by exploiting the L1-norm minimization with
Eq. (4).

At the beginning of the tracking process, for each initialized
object, say, the jth object, we calculate its common AdaSR c0,j,
which is named the reference AdaSR of the jth object based on the
common sample set B. In addition, considering the appearance
variations of each object, we online adaptively evaluate their
reference AdaSRs (c0,j) based on Eq. (6), which ensures that the
evolution of each reference AdaSR is temporally consistent.
During the tracking process, when we obtain an instantaneous
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tracked object Funknow with its corresponding common sparse
representation ct,unknow at frame t, we assign the tracked object
to a class by calculating the similarity between the instantaneous
common sparse representation with each prior reference AdaSR
as follows:

ClassifyðFunknowÞ ¼ argmin
j

rjðFunknowÞ where rjðFunknowÞ

¼ :ct,unknow�
gc0,j:2 ð9Þ

Our scheme is different from SRC [22], in which, for each class
j, they define its characteristic function dj, which only selects the
coefficients associated with the jth class. For ct,unknow, djðct,unknowÞ

is a new vector, whose nonzero entries are the ones in ct,unknow

that are associated with class j, and whose entries associated with
other classes are zero as

Classify ðFunknowÞ ¼ argmin
j

rjðFunknowÞ
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Fig. 7. Illustration of sparse coefficients on multi-object tracking: (a)�(d) are the coeffi

color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Examples of the tracked objects during the multi-object tracking procedure:
where rjðFunknowÞ ¼ :Funknow�Bdjðct,unknowÞ:2 ð10Þ

Their classification method has made great success in face
recognition based on SRC, when the sample set is large, with carefully
cropping and normalizing each sample offline for good performance.
However, a large sample set and pretreatments of the samples are
impossible for the efficiency requirement of object tracking.

Figs. 6 and 7 show samples from two classes and their
corresponding sparse coefficient vectors. Fig. 6(a) and (b) are
from the same object in [36] (redteam), and Fig. 6(c) and (d) are
from the same object in [36] (egtest01). Fig. 7(a)–(d) show the
sparse coefficients based on the same common sample set
of Fig. 6(a)–(d), respectively. The values of L2-norm :U:2 between
the four sparse coefficients are given in Fig. 7, where we can see
that objects from the same class have similar sparse coefficient
vectors (the smaller :U:2 values shown in red), indicating that the
AdaSRA is feasible. Algorithm 2 below summarizes the multi-
object tracking procedure.
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cient vectors of Figs. 6(a)�(d), respectively. (For interpretation of the references to

(a) and (b) are from the same object, and (c) and (d) are from another object.
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Algorithm 2: Multi-object tracking via AdaSRA
1.
 Initialization (t ¼0).
1.1 Initializing each tracked object;
1.2 Constructing the common sample set B for all objects;
1.3 Calculating the reference sparse representation c0,j for

each object.
Fig. 8. Three track
2.
ing
Object Validation and Identification (t40). In a new video
frame:
2.1 Predicting the prior position and reference sparse repre-

sentation gc0,j of each tracked object in the new frame;
2.2 Obtaining the instantaneous tracked result Funknow

by a single object tracking procedure described in
Algorithm 1;
exam
ples.
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2.3 Calculating its instantaneous common sparse representa-
tion ct,unknow of the object based on the common sample
set B;

2.4 Classifying the object with AdaSRA as in Eq. (9);
. 9. T

king
racking results with deterioration in object images. The tracking result is marked

errors: (a) results of our proposed method and (b) results of the method in [26].
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Fig. 10. Average DER of the four featur
2.5 Correcting the posterior position and reference sparse
representation c0,j of each object based on Kalman filter.
with

nde
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3.
 t¼tþ1. If no updating, go to step 2 or end the tracking loop,
otherwise go to step 4.
black rectangle and the ground truth is with blue ellipse, once there are
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ed tracking methods.
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4.
Tab
Vid

V

V

S

C

Common sample set updating (t40).
4.1 Updating the sample set of each object;
4.2 Go to step 1.2.
le 1
eo fil

ideo

IVID

DL tr

ARVI
5. Experiments

In this section, experiments with comparisons are carried out
to validate the proposed tracking approach. The experimental
videos are selected from VIVID [36], CAVIAR [37] and our SDL data
set [38]. The test videos consist of a variety of cases, including
occlusions between tracking objects, lighting changes, scale
variations, object rotations and complex backgrounds. Some of
the videos are captured on moving platforms, and the target
objects include moving pedestrians and vehicles. In the experi-
ments, no image pre-processing is employed.

5.1. Validation of the Adaptive Sparse Representation (AdaSR)

There are various factors that make tracking challenging:
different viewpoints (most of these sequences are captured by
moving cameras), illumination changes, variations of the objects
and backgrounds. Experiments on four challenging tracking
examples are shown in Figs. 8 and 9 to illustrate the advantages
of the proposed object representation.

The first test video in Fig. 8a is from the VIVID data set, and the
object is a small jeep with a relative simple background and
uniform object movement. The appearance of the object changes
remarkably in size during the tracking process. The second video
e list for average DER calculation.

test set Video name

tracking video set redteam

egtest01

egtest02

egtest04

acking video set xiangshan_ 0032

xiangshan_ 0043.

A tracking video set Browse1

Fight_Chase

OneStopMoveEnter1cor

EnterExitCrossingPaths2front
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Fig. 11. Average DR of the three feature selec
shown in Fig. 8b is from the VIVID data set. In this video, the
car being tracked first loops around on a runway, then goes
straight and speeds up. The car changes in both size and orienta-
tion remarkably during the tracking process. In addition, because
of the similar color between the car and its background, the
color features are not discriminative for tracking. The third test
video in Fig. 8c is from the CAVIAR data set. In this video, the
target is a person walking across the corridor. Since the person
image is almost in gray, the color features are not informative for
tracking. Furthermore, there are some mimic objects such
as the columns, which are quite similar to the object both in
color and in shape. The tracking conditions in Fig. 8(a)–(c) result
in the degeneration of the objects representations in feature
space, which always leads to the template drift and tracking
failures.

AdaSR chooses a limited subset of representative samples as a
basis for object representation, which is insensitive to object
rotation, deterioration in object images, object’s scale variation
and complex background. What’s more, the evolution of the
AdaSR in filter framework can ensure the temporal consistency
and adaptation of the appearances variations during the
tracking process. The tracking results in Fig. 8 demonstrate that
the proposed approach can effectively handle such tracking
conditions.

In Fig. 9, we compare our proposed tracking method with the
method in [26]. The test video is from the VIVID data set. In this
video, the car being tracked goes straight along a road. During the
tracking process, the object images have heavy deterioration
(220th and 480th frames), which results in the degeneration of
its representation in feature space and then may cause the
template drift. We compare our proposed tracking method with
the method in [26]. In Fig. 9a, our tracking method can track the
object robustly, while the method in [26] loses the object in
420th, 490th and 520th frames shown in Fig. 9b.

To quantitatively evaluate the efficiency of the proposed
AdaSR, we define a relative displacement error rate (DER)
between the tracking results and the ground truth for perfor-
mance evaluation.

DER¼
Displacement error between tracked object position and groundtruth

Size of the object

Firstly, we compare our proposed adaptive sparse representa-
tion with other three representative ones, including the color [14],
SIFT [16] and HOGC [11] features. In the experiments, we use the
160 180 200 220
e Index

tion/evaluation-based tracking methods.
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average DER of 10 video clips (listed in Table 1) to reflect the
performance of each feature based tracking method. We use the
same initialization for all the methods. The lower the average DER
is, the better the tracking performance. The results of the four
Fig. 12. Tracking results with partial occlusions and appearance variations of the tracke

with blue ellipse, once there are tracking errors: (a1) and (b1) results of our proposed
representations are shown in Fig. 10. It can be seen from the
figure that the average DER of our AdaSR (about 0.04–0.1) is much
smaller than those of the other three methods in almost the
whole tracking process. These comparisons demonstrate that the
d object. The tracking result is marked with black rectangle and the ground truth is

method and (a2) and (b2) results of the method in [26].
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proposed AdaSR has better performance in object representation
than the others.

Furthermore, to demonstrate the adaptive efficiency of the
proposed evolution of sparse representation in Kalman filter, we
compare with two other representative feature selection/evaluation
methods for adaptive visual tracking, including Variance ratio
feature shift [13], and Peak difference feature shift tracking meth-
ods [13]. It can be seen in Fig. 11 that the average DER of our
proposed approaches is much lower and holding a lower variation
than those of the other methods, which indicates that the proposed
object sparse representation with evaluation in filter frameworks
has a better stability during the tracking process, which shows the
better adaptation to object and background variation.
5.2. Tracking results under partial occlusions

Partial occlusion, which can easily and quickly change the
appearances of the tracking objects, is another key factor that
makes the tracking unstable. The first video shown in Fig. 12(a1)
and (a2) is from the SDL data set. The main challenges of tracking
in this video sequence arise from frequent partial occlusions of
the object by other persons. When the object is occluded (260th
and 400th frames), there are troubles using the initialized whole
object template for tracking. By representing the object with a
subset of similar samples, our approach succeeds in this example,
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Fig. 13. Average DER of three tracking

Fig. 14. Selected examples in the common sample set: (a) samples fro
since when a part of the object is occluded, we can track the
object with other un-occluded parts of the object in the subset.
The second video in Fig. 12(b1) and (b2) from the SDL data set is
very challenging. There are not only serious occlusions (380th and
840th frames) but also appearance variations (560th frame) on
the object. Our approach can also track the object correctly. The
tracking results of these two videos show that the proposed
approach can effectively deal with partial occlusions and appear-
ance variations.

In the experiments, we still use the average DER (10 video
clips listed in Table 1) to compare the performance between our
proposed tracking method and other two representative ones,
including Kalman Filter based tracking method [4] and Particle
Filter based tracking method [5]. The results of the three methods
are shown in Fig. 13. It can be seen that the average DER of our
proposed approaches (about 0.04–0.1) is much lower than those
of the other methods, which validate that the proposed object
tracking can better handle the partial occlusions compared with
the traditional ones.
5.3. Tracking results of multiple objects

In the experiments of multi-object tracking, there are three
classes totally (three tracked objects). We select a test object,
which belongs to class one, for object classification experiment.
160 180 200 220
e Index

methods under partial occlusions.

m class 1, (b) samples from class 2, and (c) samples from class 3.
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Some samples from each class in the common sample set are
shown in Fig. 14. We test the classification performance of
AdaSRA based on Eq. (9) and SRC based on Eq. (10).

In experiment one, we construct the common sample set with
50 samples from each class, and the results are shown in Fig. 15b.
We classify the object to the class with the smallest rjðFtÞ in both
AdaSRA and SRC. It can be seen from the figure that SRC
misclassifies the test object into class 2, according to Fig. 15b
(SRC), while our approach correctly classify the object to class 1,
according to Fig. 15b (AdaSRA). When the sample set of each class
is expanded to 100 samples in experiment two, the classification
results of the both methods are given in Fig. 15c. The proposed
approach can obviously classify the object shown in Fig. 15c
(AdaSRA). SRC makes some improvements, but still has misclas-
sification as shown in Fig. 15c (SRC).

The following tracking results in Fig. 16 are obtained by our
proposed multi-object tracking approach based on AdaSRA. Fig. 16a
shows the tracking results of two cars, which rotate around on a
runway (330th and 860th frames) and intersect with other
similar vehicles (510th and 690th frames). The results show that
Fig. 16. The results of m
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Fig. 15. Illustration of the classification results: (a) a test object from class 1, (b) the r

results of SRC in [22] and AdaSRA based on 100 samples for each class.
our multi-object tracking method can correctly track and classify
each object. Fig. 16b demonstrates the tracking results of the four
objects.

6. Conclusions

Object representation is very important to improve the adapt-
ability of visual object tracking. In this paper, we have proposed a
novel object tracking approach based on adaptive sparse repre-
sentation by exploiting the L1-norm minimization in sample
space and Kalman filter and then extended the approach to
multi-object tracking by analyzing the adaptive reference sparse
representation based on the common sample set. The tracking
results with comparisons to other representative methods are
provided, which indicates that the proposed tracking approach
achieves state-of-the-art performance, even under partial occlu-
sion, object distortion and appearance variations of both objects
and their backgrounds. The experimental results of multi-object
tracking demonstrate the effectiveness of AdaSRA on classifying
multiple objects.
ulti-object tracking.
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esults of SRC in [22] and AdaSRA based on 50 samples for each class, and (c) the
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The new concepts and techniques introduced in this paper
include the sample set, object representation based on adaptive
sparse representation, and object classification based on AdaSRA.
And in the evaluation process, we extend the function of Kalman
filter for evolution of sparse representation, which is novel in both
visual object tracking and L1-norm minimization researches.

A known issue in the proposed tracking method is that the whole
object occlusion problem has not been solved yet, for our proposed
approach cannot predict the position of the object in the following
video frames. This issue should be considered in the future work.
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